Efficient vitrification of mouse embryos using the Kitasato Vitrification System as a novel vitrification device
نویسندگان
چکیده
BACKGROUND Currently, the cryopreservation of embryos and oocytes is essential for assisted reproductive technology (ART) laboratories worldwide. This study aimed to evaluate the efficacy of the Kitasato Vitrification System (KVS) as a vitrification device for the cryopreservation of mouse embryos to determine whether this novel device can be adapted to the field of ART. METHODS In Experiment 1, blastocysts were vitrified using the KVS. Vitrified blastocysts were warmed and subsequently cultured for 72 h. In Experiment 2, 2-cell-stage embryos were vitrified using the KVS, and vitrified embryos were warmed and subsequently cultured for 96 h. In Experiment 3, we evaluated the in vivo developmental potential of vitrified 2-cell-stage embryos using the KVS, and in Experiment 4, we evaluated the cooling and warming rates for these devices using a numerical simulation. RESULTS In Experiment 1, there were no significant differences between the survival rates of the KVS and a control device. However, re-expanded (100%) and hatching (91.8%) rates were significantly higher for blastocysts vitrified using the KVS. In Experiment 2, there were no significant differences between the survival rates, or rates of development to the blastocyst stage, of vitrified and fresh embryos. In Experiment 3, after embryo transfer, 41% of the embryos developed into live offspring. In Experiment 4, the cooling and warming rates of the KVS were 683,000 and 612,000 °C/min, respectively, exceeding those of the control device. CONCLUSIONS Our study clearly demonstrates that the KVS is a novel vitrification device for the cryopreservation of mouse embryos at the blastocyst and 2-cell stage.
منابع مشابه
P-107: The Effects of Cryotop Vitrification on Heat Shock Protein 72 Expression in Mouse 2-Cell Embryos by Nested Quantitative PCR
Background: The aim of the study was to compare the effects of two different concentrations of cryoprotectants by Cryotop vitrification on survival and Heat shock protein 72 (Hspa1a) expression of two-cell mouse embryos. Materials and Methods: Different cryoprotectants’ concentrations of the combination of dimethyl sulfoxide (DMSO) and ethylene glycol (EG) were used and compared with each other...
متن کاملP-26: The Effect of Zygote and 2-cell Development Stages on Vitrification Process of Mouse Embryo
Background: While it is possible to routinely cryopreserve embryos from several mammalian species, the cryopreservation of embryos has largely been limited by their high sensitivity to chilling injury. Many factors such as the stage of embryonic development, cryoprotectant toxicity, the composition of the vitrification solution and cooling and warming rates can influence survival of embryos aft...
متن کاملWhich stage of mouse embryos is more appropriate for vitrification?
Objective Vitrification has been shown as one of the most effective methods of cryopreservation for mammalian embryos. However, there is no consensus which stage of embryonic development is the most appropriate for vitrification with subsequent maximal development after thawing. This study was carried out to explore and compare the effect(s) of vitrification on mouse 2-cell, 4-cell, 8-cell, mor...
متن کاملP-98: Effect of Mouse Embryo Vitrification on Histone Modifications
Background: Vitrification has been usually used as an assisted reproductive technology in animals and humans. This method needs high concentrations of cryoprotectants that can be toxic with high cooling degrees. Then, vitrification could be change histone modifications such as methylation and acetylation can performance as regulatory controls of gene transcription. So, the purpose of the presen...
متن کاملEffects of blastocyst artificial collapse prior to vitrification on hatching and survival rates and the expression of klf4 gene in mouse embryos
Although the rate of blastocysts implantation of embryos is higher than previous stages but their survival rate is lower than them, which could be attributed to the completely filled blastocoel cavity with liquid and increased possibility of the formation of ice crystals. This liquid could prevent the penetration of cryoprotecting materials into the embryos. In this study, we reduced the volume...
متن کامل